Package: llama 0.10.1

llama: Leveraging Learning to Automatically Manage Algorithms

Provides functionality to train and evaluate algorithm selection models for portfolios.

Authors:Lars Kotthoff [aut,cre], Bernd Bischl [aut], Barry Hurley [ctb], Talal Rahwan [ctb], Damir Pulatov [ctb]

llama_0.10.1.tar.gz
llama_0.10.1.zip(r-4.5)llama_0.10.1.zip(r-4.4)llama_0.10.1.zip(r-4.3)
llama_0.10.1.tgz(r-4.4-any)llama_0.10.1.tgz(r-4.3-any)
llama_0.10.1.tar.gz(r-4.5-noble)llama_0.10.1.tar.gz(r-4.4-noble)
llama_0.10.1.tgz(r-4.4-emscripten)llama_0.10.1.tgz(r-4.3-emscripten)
llama.pdf |llama.html
llama/json (API)
NEWS

# Install 'llama' in R:
install.packages('llama', repos = c('https://larskotthoff.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://bitbucket.org/lkotthoff/llama

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:
  • satsolvers - Example data for Leveraging Learning to Automatically Manage Algorithms

On CRAN:

openjdk

2.80 score 4 stars 1 packages 53 scripts 417 downloads 28 exports 42 dependencies

Last updated 4 years agofrom:f95206aaeb. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 16 2025
R-4.5-winOKJan 16 2025
R-4.5-linuxOKJan 16 2025
R-4.4-winOKJan 16 2025
R-4.4-macOKJan 16 2025
R-4.3-winOKJan 16 2025
R-4.3-macOKJan 16 2025

Exports:bsFoldsclassifyclassifyPairsclustercontributionscvFoldsimputeCensoredinputmakeRLearner.classif.constantmisclassificationPenaltiesnormalizeparscoresperfScatterPlotpredictLearner.classif.constantpredTableprint.llama.dataprint.llama.modelregressionregressionPairssingleBestsingleBestByCountsingleBestByParsingleBestBySuccessessuccessestrainLearner.classif.constanttrainTesttuneModelvbs

Dependencies:backportsBBmisccheckmateclicolorspacedata.tablefansifarverfastmatchggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmlrmunsellnlmeparallelMapParamHelperspillarpkgconfigplyrR6RColorBrewerRcpprJavarlangscalesstringisurvivaltibbleutf8vctrsviridisLitewithrXML

Readme and manuals

Help Manual

Help pageTopics
Leveraging Learning to Automatically Manage Algorithmsllama-package llama
Analysis functionscontributions
Bootstrapping foldsbsFolds
Classification modelclassify
Classification model for pairs of algorithmsclassifyPairs
Cluster modelcluster
Cross-validation foldscvFolds
HelpersmakeRLearner.classif.constant predictLearner.classif.constant print.llama.data print.llama.model trainLearner.classif.constant
Impute censored valuesimputeCensored
Read datainput
Convenience functionspredTable singleBest singleBestByCount singleBestByPar singleBestBySuccesses vbs
Misclassification penaltymisclassificationPenalties
Normalize featuresnormalize
Penalized average runtime scoreparscores
Plot convenience functions to visualise selectorsperfScatterPlot
Regression modelregression
Regression model for pairs of algorithmsregressionPairs
Example data for Leveraging Learning to Automatically Manage Algorithmssatsolvers
Successsuccesses
Train / test splittrainTest
Tune the hyperparameters of the machine learning algorithm underlying a modeltuneModel